Phosphoproteomic analysis of anaplastic lymphoma kinase (ALK) downstream signaling pathways identifies signal transducer and activator of transcription 3 as a functional target of activated ALK in neuroblastoma cells
نویسندگان
چکیده
Activation of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is a key oncogenic mechanism in a growing number of tumor types. In the majority of cases, ALK is activated by fusion with a dimerizing partner protein as a result of chromosomal translocation events, most studied in the case of the nucleophosmin-ALK and echinoderm microtubule-associated protein-like 4-ALK oncoproteins. It is now also appreciated that the full-length ALK receptor can be activated by point mutations and by deletions within the extracellular domain, such as those observed in neuroblastoma. Several studies have employed phosphoproteomics approaches to find substrates of ALK fusion proteins. In this study, we used MS-based phosphotyrosine profiling to characterize phosphotyrosine signaling events associated with the full-length ALK receptor. A number of previously identified and novel targets were identified. One of these, signal transducer and activator of transcription 3 (STAT3), has previously been observed to be activated in response to oncogenic ALK signaling, but the significance of this in signaling from the full-length ALK receptor has not been explored further. We show here that activated ALK robustly activates STAT3 on Tyr705 in a number of independent neuroblastoma cell lines. Furthermore, knockdown of STAT3 by RNA interference resulted in a reduction in myelocytomatosis neuroblastom (MYCN) protein levels downstream of ALK signaling. These observations, together with a decreased level of MYCN and inhibition of neuroblastoma cell growth in the presence of STAT3 inhibitors, suggest that activation of STAT3 is important for ALK signaling activity in neuroblastoma.
منابع مشابه
C/EBPβ expression in ALK-positive anaplastic large cell lymphomas is required for cell proliferation and is induced by the STAT3 signaling pathway.
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by the t(2;5) chromosomal translocation, resulting in the expression of a fusion protein formed of nucleophosmin (NPM) and ALK. Recently, we reported the abnormal expression of the transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) in ALK-positive anaplastic large cell lymphoma...
متن کاملFunctional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes.
Anaplastic large cell lymphomas (ALCLs) represent a subset of lymphomas in which the anaplastic lymphoma kinase (ALK) gene is frequently fused to the nucleophosmin (NPM) gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo and that ALK activity is strictly required for the survival of...
متن کاملMolecular Pathways Inhibition of ALK Signaling for Cancer Therapy
Paradigm shifting advances in cancer can occur after discovering the key oncogenic drivers of the malignant process, understanding their detailed molecular mechanisms, and exploiting this transdisciplinary knowledge therapeutically. A variety of human malignancies have anaplastic lymphoma kinase (ALK) translocations, amplifications, or oncogenic mutations, including anaplastic large cell lympho...
متن کاملErk5 Is a Potential Therapeutic Target in Alk-positive Neuroblastoma
Anaplastic lymphoma kinase (ALK) has been implicated as an oncogenic driver in pediatric neuroblastoma and is frequently activated by amplifi cation and gain-of-function mutations. However, results from phase I trials have suggested that, in contrast to other tumor types such as non–small cell lung cancer, single-agent therapy with the ALK inhibitor crizotinib is not effective in pediatric pati...
متن کاملCell culture and Drosophila model systems define three classes of anaplastic lymphoma kinase mutations in neuroblastoma
Neuroblastoma is a childhood extracranial solid tumour that is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly requires characterisation of these muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 280 شماره
صفحات -
تاریخ انتشار 2013